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ABSTRACT

In this paper we obtain a general lower bound for the tail distribution
of the Fourier spectrum of Boolean functions f on {1, —l}N. Roughly
speaking, fixing kK € Z, and assuming that f is not essentially deter-
mined by a bounded number (depending on k) of variables, we have that

Z|S|>k lf(S)|2 > k=1/2=¢  The example of the majority function
shows that this result is basically optimal.

Introduction
Over recent years, a new area in Harmonic Analysis has emerged, which is the
Fourier Analysis of Boolean functions f: {1, -1} — {0,1}.

Motivated by problems from complexity theory and computer science, a num-
ber of remarkable results were obtained from the study of the Fourier transform
f of f. In this context we mention, for instance, the works of Kahn, Kalai and
Linial [KKL] on the influence of variables and E. Friedgut [Fr] on the characteri-
zation of the sharp threshold of monotone properties. They rely crucially on the
analysis of the Fourier transform.

There is a general philosophy which claims that if f defines a property of ‘high
complexity’, then supp f , the support of the Fourier transform, has to be ‘spread
out’. The result in this paper is one more illustration of this phenomenon: If f
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is not essentially determined by a few variables, then the tail distribution of f
satisfies a lower bound

Y ISP > ek

[S|>k
for all (fixed) k. A precise formulation appears below. This estimate, which
turns out to be basically sharp, thus expresses to what extent f may be fully
concentrated on coefficients f(S) of low weight |S|. For a real function f on
{=1,1}" let f = 5" f(S)ws be its Fourier expansions. Here,

ws(xl,xz, e ,.Z‘N) = (_1)2,‘55%‘

L?-weight of the tail of the Fourier spectrum
The main result of this Note is the following

PROPOSITION*: Let f = xa,A C {1,—1}". Let k > 0 be an integer and v > 0
a fixed constant. Assume

(1) STUFS)PIFS)] < y47) > 42

Then

) PORHC
|SI>k

Proof: 'We may clearly assume that

3) Z If(S)? < ﬁd’Y

|S|>k
Fix 0 < k¥ < 1 and define
I = {z € [1,N]‘ S f®r> K}.
i€S5,18{<k
Then

I€|10|<Z Z S)?<k and |lo| <k k.
i= leSfSigk

* This question was raised by J. Hastad, who obtained a lower estimate of the form
C7* in (2). The author is also grateful to G. Kalai for several discussions on this
and related topics.

** More precisely, there is the lower bound c.k~'/27¢ for all ¢ > 0. This abbreviated
notation will be used repeatedly in the sequel.
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Thus

@ S{EFs < lst < kIFS) < b < (k16 < I

if we assume
(5) (k™ k)*16™*" < 1/100.
Denote
I(') = {1, N\ Lo.
It follows from (1), (3) and (4) that
. 1 1 1
2 2 L o L o 19
(6) Z FS)E > 72 = 157 = 3557 > 57
sarh#e
ISI<k
Define for ¢t > 0
(7) = > 1P
2t<|SnIj| <2ttt
so that (6) implies that
(8) Yo pe>A2
0<t<log k

(where logk = 2logk).
Next, fix a subset
I C I(’)
Write the variable z € {1, —1}" as 2 = (z,29) with x; € {1, -1}, For a fixed
xs write fz,(x1) for f(xs,x1) and write also Frr(z2) for f;z (T'). Thus,

flzy,29) = Z Fr(zo)wr(xy).

TChH

Fix 0 < § < 1 and {;}:er, independent {0,1}-valued selectors of mean 1 — .
Define

I(UJ) = {l S I1|£i(w) = 1}
Fix z,. Since fy, is {0, 1}-valued,

(9) 2 / Frs = Ergoy[faa)Pdy = / | fon = Erg[f]lds
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where

(10)
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for = Erylfe,] = > Fr(z2)wr().

TCI
T H{w)

Fix 1 < p < 2. Then by (9) and (10)

and

p-2( ¥ |F{i}(x2>12)1/2

i€h\I{w)
< ”f:vz - ]EI(w) [fﬂvz]”P
< fes = Ere e n ™ 11 fzs = Eren [fea )13
< lfes = Er()[fea I3

:[ > !FT($2)|2]1/17

TCh
TEI{w)

p/2
(1) [2[1—si<w)nF{i}<xz)l2] <o- 172 31 - [[ &) 1Friz)P.

ich TCh €T

Recall that [¢;dw =1— 4. The left side of (11) is at least

(12)

Thus

p/2 p/2
&*/? [ > IF{i}(-’ca)F] Y (&) = (1 - 6) | Fay (2)
ich i€l
p/2
22| ¥ [Pl - | 3 (66 - 0 - )P el
i€l i€l

512 3" | Fray (o) <(p_1—m[zu~ﬂ& NFr(zs)] ]
i€l TCh €T

p/2

F 3 (€w) - (1 - ) Py @)l

i€l
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Integrate (13) in 25 and w. Clearly

/11
w <[]z
5[ / / [ D Y (1-&w )IF{,}(:UQ)I“]1/2dwdx2]p/2.

i€

p/2
5, (w) — 5))|F{i}(a:2)|2 dwdz,

i€l

p/2
-(1- )lF{i}($2)|2}d¢dd$2]

Estimate

Fa@di=| Y f(S)us)

sal ={i}

Yo f(Sus

[S1<k. SN ={i}

(Z |Feap(a)[*(1 - &(w))) . 5( 3

i€h el

2

i€l

IN

+ Yo f(Sws|,

|S|>k,. SN ={i}
4) 1/2

> f(Sws
2
Z f(s)ws

IS|<k.snh={i}
IS|>k,SnIy={i}

(1 - 5,(&))),

and integrating, by Beckner's inequality

/] [DF{z}(fvz | (1—51(w))] " e

el

s3k[z( 5 {i}|f(s>|2)2]1/2+62lf(sn?

i€l |S|<k, SN = |SI>k

(3 17 S)P) 153 ISP

B 51>

<3*!7+6 D IH(S)F

[S|>k

(15)

(we use here the fact that I; N Iy = ¢ and the definition of Io).
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Substitute (15) in (14). Returning to (13), we thus obtain

2 ST F S S -y - (1= o)) f(s)P2
S

(SNIy|=1
(16) R p/2
+5P/2< > |f(S)|2) + (3k1/2)P/2,
|1S|>k
Estimate
1- (1=l <1801 if|SNI)| <k,
<1 otherwise.
Thus
2N ISP -1 Y ISn L9
1SN =1 [SnI|<k
+ -2 If(S)?
(17) 1SI>k
. p/2
_|_5P/2( Z |f(5)|2) _+_(3k,i1/2)p/2.
1S|>k

We will now specify the set I; C I{.
Fix 0 < t9 < logk and let Iy = I, be a random subset of I of density
107327 %. This ensures that if 2% < |SN I} < 2%F! then

(18) E,[|SNnL|=1]>107%
Also
(19) E.[|SN || =107327%|S N Iy

Applying E,» to (17) and recalling the definition (7) of p;, we get

o, Sl =075 Y 2]+ (p- ) Y ISP

t<logk 1S|>k
(20)

p/2
+5”/2< > If(S)P) + (3FK1/2)Pr2,
15>k

In order to have the left term in (20) larger than the first term on the right, take

(21) 5~ (p— 1)/ (————2% )
t<log k 2tp,
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Taking

(22) k=10"%

to make the last term in (20) negligible, condition (5) is satisfied and (20) and

(21) imply

. 2t p, p/(2-p) 2/
(22) 3 IF(S) 2 min (p—np/@—M(——f)—) prop? .

ot
1S|>k Ztﬁlogk P

Here 0 < tg <logk and 1 < p < 2 are arbitrary.
We distinguish two cases.

CASE 1:

(23) > 2p < Vk

t<log k
Recalling (8), we may take 0 < ¢y < logk such that
(24) pto 2 1/logk.
Take in (22)

(25) p=1+1/logk.

From (23), (24) and (25),

(26) (22) 2 min ((log k) ~2k~1/2, (log k)~2) > (log k) ~2k~1/2,
CASE 2:
Z 2tp, > Vk.
t<log k

Choose tg s.t.

1 vk
(27) 2t°pt0 > PN Z 2tpt > 1
log & rolonk logk
hence
(28) pto > (log k) 7k~/2,

Take now p—2 in (22). We get
(20)  (22) 2 min ((logk) Y CPIm1k=12 (logk) "2k~ 1P) > f71/2-,

Thus (2) follows from (26) and (29).
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COROLLARY: Let f = X4, A C {1,1}V satisfying
(30) 1A](1 - |A]) > 1/10.

Let k > 0 be an integer and assume

(31) max |f(S)] < 471,

Then

(32) S IfSPF 2 R
|S|>k

Remark: The lower bound (32) in the corollary is basically sharp. This is
demonstrated by the example of the ‘majority function’ which we define as the
{1, —1}-valued function

(33) A f(e) = sign(er +e2+ - +en)

on {1,-1}". It is known (see [K]) that in this case

-1

39 o~ () ko prisi=kso
Hence
(35) ISP~ k32

1S1=k
and
(36) ST ~ kYA

1S{>k
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