ON THE DISTRIBUTION OF THE FOURIER SPECTRUM OF BOOLEAN FUNCTIONS

BY

J. BOURGAIN

School of Mathematics, Institute for Advanced Study Princeton, NJ 08540, USA e-mail: bourgain@math.ias.edu

ABSTRACT

In this paper we obtain a general lower bound for the tail distribution of the Fourier spectrum of Boolean functions f on $\{1,-1\}^N$. Roughly speaking, fixing $k \in \mathbb{Z}_+$ and assuming that f is not essentially determined by a bounded number (depending on k) of variables, we have that $\sum_{|S|> k} |\hat{f}(S)|^2 \gtrsim k^{-1/2-\epsilon}$. The example of the majority function shows that this result is basically optimal.

Introduction

Over recent years, a new area in Harmonic Analysis has emerged, which is the Fourier Analysis of Boolean functions $f: \{1, -1\}^I \rightarrow \{0, 1\}.$

Motivated by problems from complexity theory and computer science, a number of remarkable results were obtained from the study of the Fourier transform \hat{f} of f. In this context we mention, for instance, the works of Kahn, Kalai and Linial [KKL] on the influence of variables and E. Friedgut [Fr] on the characterization of the sharp threshold of monotone properties. They rely crucially on the analysis of the Fourier transform.

There is a general philosophy which claims that if f defines a property of 'high complexity', then supp \hat{f} , the support of the Fourier transform, has to be 'spread out'. The result in this paper is one more illustration of this phenomenon: If f

Received January 31, 2001

270 **J. BOURGAIN Isr. J. Math.**

is not essentially determined by a few variables, then the tail distribution of \hat{f} satisfies a lower bound

$$
\sum_{|S|>k} |\hat{f}(S)|^2 \gg c_{\varepsilon} k^{-\frac{1}{2}-1}
$$

for all (fixed) k . A precise formulation appears below. This estimate, which turns out to be basically sharp, thus expresses to what extent \hat{f} may be fully concentrated on coefficients $\hat{f}(S)$ of low weight $|S|$. For a real function f on $\{-1, 1\}^N$ let $f = \sum \hat{f}(S)w_S$ be its Fourier expansions. Here,

$$
w_S(x_1,x_2,\ldots,x_N)=(-1)^{\sum_{I\in S}x_i}.
$$

L^2 -weight of the tail of the Fourier spectrum

The main result of this Note is the following

PROPOSITION*: Let $f = \chi_A$, $A \subset \{1, -1\}^N$. Let $k > 0$ be an integer and $\gamma > 0$ *a fixed constant. Assume*

(1)
$$
\sum{\{|f(S)|^2| |f(S)| < \gamma 4^{-k^2}\}} > \gamma^2.
$$

Then

(2)
$$
\sum_{|S|>k} |\hat{f}(S)|^2 \gtrsim k^{-\frac{1}{2}-**}
$$

Proof: We may clearly assume that

(3)
$$
\sum_{|S|>k} |\widehat{f}(S)|^2 < \frac{1}{100}\gamma^2.
$$

Fix $0 < \kappa < 1$ and define

$$
I_0 = \bigg\{ i \in [1, N] \Big| \sum_{i \in S, |S| \leq k} |\hat{f}(S)|^2 > \kappa \bigg\}.
$$

Then

$$
\kappa|I_0| \le \sum_{i=1}^N \sum_{i \in S, |S| \le k} |\hat{f}(S)|^2 < k \quad \text{and} \quad |I_0| < \kappa^{-1}k.
$$

^{*} This question was raised by J. H£stad, who obtained a lower estimate of the form C^{-k} in (2). The author is also grateful to G. Kalai for several discussions on this and related topics.

^{**} More precisely, there is the lower bound $c_{\varepsilon} k^{-1/2-\varepsilon}$ for all $\varepsilon > 0$. This abbreviated notation will be used repeatedly in the sequel.

Thus

$$
(4) \quad \sum \left\{ |\hat{f}(S)|^2 \Big| S \subset I_0, |S| \le k, |\hat{f}(S)| < \gamma 4^{-k^2} \right\} < (\kappa^{-1}k)^k \gamma^2 16^{-k^2} < \frac{\gamma^2}{100}
$$

if we assume

(5)
$$
(\kappa^{-1}k)^k 16^{-k^2} < 1/100.
$$

Denote

$$
I_0'=[1,N]\backslash I_0.
$$

It follows from (1) , (3) and (4) that

(6)
$$
\sum_{\substack{S \cap I_0' \neq \emptyset \\ |S| \le k}} |\widehat{f}(S)|^2 > \gamma^2 - \frac{1}{100} \gamma^2 - \frac{1}{100} \gamma^2 > \frac{1}{2} \gamma^2.
$$

Define for $t \geq 0$

(7)
$$
\rho_t = \sum_{2^t \leq |S \cap I'_0| < 2^{t+1}} |\hat{f}(S)|^2
$$

so that (6) implies that

(8)
$$
\sum_{0 \leq t \leq \log k} \rho_t > \gamma^2/2
$$

(where $\log k = 2 \log k$).

Next, fix a subset

 $I_1 \subset I'_0$.

Write the variable $x \in \{1,-1\}^N$ as $x = (x_1, x_2)$ with $x_1 \in \{1,-1\}^{I_1}$. For a fixed x_2 write $f_{x_2}(x_1)$ for $f(x_2, x_1)$ and write also $F_T(x_2)$ for $\hat{f}_{x_2}(T)$. Thus,

$$
f(x_1, x_2) = \sum_{T \subset I_1} F_T(x_2) w_T(x_1).
$$

Fix $0 < \delta < 1$ and $\{\xi_i\}_{i \in I_1}$ independent $\{0, 1\}$ -valued selectors of mean $1 - \delta$. Define

 $I(\omega) = \{i \in I_1 | \xi_i(\omega) = 1\}.$

Fix x_2 . Since f_{x_2} is $\{0, 1\}$ -valued,

(9)
$$
2 \int |f_{x_2} - \mathbb{E}_{I(\omega)}[f_{x_2}]|^2 dx_1 = \int |f_{x_2} - \mathbb{E}_{I(\omega)}[f_{x_2}]| dx_1
$$

where

(10)
$$
f_{x_2} - \mathbb{E}_{I(\omega)}[f_{x_2}] = \sum_{\substack{T \subset I_1 \\ T \not\subset I(\omega)}} F_T(x_2) w_T(\cdot).
$$

Fix $1 < p < 2$. Then by (9) and (10)

$$
(p-1)^{1/2} \Biggl(\sum_{i \in I_1 \setminus I(\omega)} |F_{\{i\}}(x_2)|^2\Biggr)^{1/2}
$$

\n
$$
\leq ||f_{x_2} - \mathbb{E}_{I_{(\omega)}}[f_{x_2}]||_p
$$

\n
$$
\leq ||f_{x_2} - \mathbb{E}_{I(\omega)}[f_{x_2}]||_1^{1-2/p'} ||f_{x_2} - \mathbb{E}_{I(\omega)}[f_{x_2}]||_2^{2/p'}
$$

\n
$$
\leq ||f_{x_2} - \mathbb{E}_{I(\omega)}[f_{x_2}]||_2^{2/p}
$$

\n
$$
= \Biggl[\sum_{T \subset I_1 \atop T \nsubseteq I(\omega)} |F_T(x_2)|^2\Biggr]^{1/p}
$$

and

$$
(11) \left[\sum_{i \in I_1} [1 - \xi_i(\omega)] |F_{\{i\}}(x_2)|^2 \right]^{p/2} \lesssim (p-1)^{-p/2} \sum_{T \subset I_1} [1 - \prod_{i \in T} \xi_i(\omega)] |F_T(x_2)|^2.
$$

Recall that $\int \xi_i d\omega = 1 - \delta$. The left side of (11) is at least

$$
\delta^{p/2} \bigg[\sum_{i \in I_1} |F_{\{i\}}(x_2)|^2 \bigg]^{p/2} - \bigg| \sum_{i \in I_1} (\xi_i(\omega) - (1 - \delta)) |F_{\{i\}}(x_2)|^2 \bigg|^{p/2}
$$

$$
\geq \delta^{p/2} \bigg[\sum_{i \in I_1} |F_{\{i\}}(x_2)|^2 \bigg] - \bigg| \sum_{i \in I_1} (\xi_i(\omega) - (1 - \delta)) |F_{\{i\}}(x_2)|^2 \bigg|^{p/2}.
$$

Thus

(13)
$$
\delta^{p/2} \sum_{i \in I_1} |F_{\{i\}}(x_2)|^2 \lesssim (p-1)^{-p/2} \left[\sum_{T \subset I_1} [1 - \prod_{i \in T} \xi_i(\omega)] |F_T(x_2)|^2 \right] + \left| \sum_{i \in I_1} (\xi_i(\omega) - (1 - \delta)) |F_{\{i\}}(x_2)|^2 \right|^{p/2}.
$$

272

Integrate (13) in x_2 and ω . Clearly

$$
\int \int \left| \sum_{i \in I_1} (\xi_i(\omega) - (1 - \delta)) |F_{\{i\}}(x_2)|^2 \right|^{p/2} d\omega dx_2
$$

(14)

$$
\leq \left[\int \int \left| \sum_{i \in I_1} (\xi_i(\omega) - (1 - \delta)) |F_{\{i\}}(x_2)|^2 \right| d\omega dx_2 \right]^{p/2}
$$

$$
\lesssim \left[\int \int \left[\sum_{i \in I_1} (1 - \xi_i(\omega)) |F_{\{i\}}(x_2)|^4 \right]^{1/2} d\omega dx_2 \right]^{p/2}.
$$

Estimate

$$
|F_{\{i\}}(x_2)| = \Big| \sum_{S \cap I_1 = \{i\}} \hat{f}(S)w_S(x) \Big|
$$

\n
$$
\leq \Big| \sum_{|S| \leq k, S \cap I_1 = \{i\}} \hat{f}(S)w_S \Big| + \Big| \sum_{|S| > k, S \cap I_1 = \{i\}} \hat{f}(S)w_S \Big|,
$$

\n
$$
\Big(\sum_{i \in I_1} |F_{\{i\}}(x_2)|^4 (1 - \xi_i(\omega)) \Big)^{1/2} \lesssim \Big(\sum_{i \in I_1} \Big| \sum_{|S| \leq k, S \cap I_1 = \{i\}} \hat{f}(S)w_S \Big|^4 \Big)^{1/2}
$$

\n
$$
+ \sum_{i \in I_1} \Big| \sum_{|S| > k, S \cap I_1 = \{i\}} \hat{f}(S)w_S \Big|^2 (1 - \xi_i(\omega)),
$$

and integrating, by Beckner's inequality

$$
\int \int \left[\sum_{i \in I_1} |F_{\{i\}}(x_2)|^4 (1 - \xi_i(\omega)) \right]^{1/2} d\omega dx_2
$$

\n
$$
\leq 3^k \left[\sum_{i \in I_1} \left(\sum_{|S| \leq k, S \cap I_1 = \{i\}} |\hat{f}(S)|^2 \right)^2 \right]^{1/2} + \delta \sum_{|S| > k} |\hat{f}(S)|^2
$$

\n
$$
\leq 3^k \max_{i \in I_1} \left(\sum_{|S| \leq k, S \cap I_1 = \{i\}} |\hat{f}(S)|^2 \right)^{1/2} + \delta \sum_{|S| > k} |\hat{f}(S)|^2
$$

\n
$$
< 3^k \kappa^{1/2} + \delta \sum_{|S| > k} |\hat{f}(S)|^2
$$

(we use here the fact that $I_1 \cap I_0 = \emptyset$ and the definition of I_0).

Substitute (15) in (14) . Returning to (13) , we thus obtain

(16)

$$
\delta^{p/2} \sum_{|S \cap I_1| = 1} |\hat{f}(S)|^2 \lesssim (p-1)^{-p/2} \sum_{S} [1 - (1-\delta)^{|S \cap I_1|}] |\hat{f}(S)|^2
$$

$$
+ \delta^{p/2} \left(\sum_{|S| > k} |\hat{f}(S)|^2 \right)^{p/2} + (3^k \kappa^{1/2})^{p/2}.
$$

Estimate

$$
1 - (1 - \delta)^{|S \cap I_1|} \le \delta |S \cap I_1| \quad \text{if } |S \cap I_0'| \le k,
$$

< 1 \qquad \text{otherwise.}

Thus

(17)
\n
$$
\delta^{p/2} \sum_{|S \cap I_1| = 1} |\hat{f}(S)|^2 \lesssim (p-1)^{-p/2} \delta \sum_{|S \cap I'_0| \le k} |S \cap I_1| |\hat{f}(S)|^2
$$
\n
$$
+ (p-1)^{-p/2} \sum_{|S| > k} |\hat{f}(S)|^2
$$
\n
$$
+ \delta^{p/2} \left(\sum_{|S| > k} |\hat{f}(S)|^2 \right)^{p/2} + (3^k \kappa^{1/2})^{p/2}.
$$

We will now specify the set
$$
I_1 \subset I'_0
$$
.

Fix $0 \leq t_0 \leq \log k$ and let $I_1 = I_{\omega'}$ be a random subset of I'_0 of density $10^{-3}2^{-t_0}$. This ensures that if $2^{t_0} \leq |S \cap I_0'| < 2^{t_0+1}$, then

(18)
$$
\mathbb{E}_{\omega'}[|S \cap I_1| = 1] > 10^{-4}.
$$

Also

(19)
$$
\mathbb{E}_{\omega'}[|S \cap I_1|] = 10^{-3} 2^{-t_0} |S \cap I'_0|.
$$

Applying $\mathbb{E}_{\omega'}$ to (17) and recalling the definition (7) of ρ_t , we get

$$
\delta^{p/2}\rho_{t_0} \lesssim (p-1)^{-p/2} \delta \bigg(\sum_{t \le \log k} 2^{t-t_0} \rho_t \bigg) + (p-1)^{-p/2} \sum_{|S| > k} |\widehat{f}(S)|^2
$$

+
$$
\delta^{p/2} \bigg(\sum_{|S| > k} |\widehat{f}(S)|^2\bigg)^{p/2} + (3^k \kappa^{1/2})^{p/2}.
$$

In order to have the left term in (20) larger than the first term on the right, take

(21)
$$
\delta \sim (p-1)^{p/(2-p)} \Big(\frac{2^{t_0} \rho_{t_0}}{\sum_{t \leq \log k} 2^t \rho_t}\Big)^{2/(2-p)}
$$

Taking

$$
\kappa = 10^{-k}
$$

to make the last term in (20) negligible, condition (5) is satisfied and (20) and (21) imply

$$
(22) \qquad \sum_{|S|>k} |\widehat{f}(S)|^2 \gtrsim \min\left\{ (p-1)^{p/(2-p)} \left(\frac{2^{t_0} \rho_{t_0}}{\sum_{t \leq \log k} 2^t \rho_t} \right)^{p/(2-p)} \rho_{t_0}, \rho_{t_0}^{2/p} \right\}.
$$

Here $0 \le t_0 \le \log k$ and $1 < p < 2$ are arbitrary.

We distinguish two cases.

CASE 1:

(23)
$$
\sum_{t \leq \log k} 2^t \rho_t < \sqrt{k}.
$$

Recalling (8), we may take $0\leq t_0\leq \log k$ such that

$$
\rho_{t_0} \gtrsim 1/\log k.
$$

Take in (22)

$$
(25) \t\t\t\t p = 1 + 1/\log k.
$$

From (23), (24) and (25),

(26)
$$
(22) \gtrsim \min\left((\log k)^{-2} k^{-1/2}, (\log k)^{-2}\right) \gtrsim (\log k)^{-2} k^{-1/2}.
$$

CASE 2:

$$
\sum_{t \leq \log k} 2^t \rho_t \geq \sqrt{k}.
$$

Choose t_0 s.t.

(27)
$$
2^{t_0} \rho_{t_0} > \frac{1}{\log k} \sum_{t \leq \log k} 2^t \rho_t > \frac{\sqrt{k}}{\log k},
$$

hence

(28)
$$
\rho_{t_0} > (\log k)^{-1} k^{-1/2}.
$$

Take now $p \xrightarrow{\lt} 2$ in (22). We get

$$
(29) \qquad (22) \gtrsim \min\left((\log k)^{-2/(2-p)-1} k^{-1/2}, (\log k)^{-2} k^{-1/p} \right) > k^{-1/2-}.
$$

Thus (2) follows from (26) and (29) .

COROLLARY: Let $f = \mathcal{X}_A, A \subset \{1, 1\}^N$ satisfying

$$
(30) \t\t |A|(1-|A|) > 1/10.
$$

Let $k > 0$ be an integer and assume

(31)
$$
\max_{|S| \le k} |\hat{f}(S)| < 4^{-k^2 - 1}.
$$

Then

(32)
$$
\sum_{|S|>k} |\hat{f}(S)|^2 \gtrsim k^{-1/2-}.
$$

Remark: The lower bound (32) in the corollary is basically sharp. This is demonstrated by the example of the 'majority function' which we define as the ${1,-1}$ -valued function

(33)
$$
f(\varepsilon) = \text{sign}(\varepsilon_1 + \varepsilon_2 + \cdots + \varepsilon_N)
$$

on $\{1,-1\}^N$. It is known (see [K]) that in this case

(34)
$$
|\hat{f}(S)|^2 \sim {N \choose k}^{-1} k^{-3/2} \text{ for } |S| = k > 0.
$$

Hence

(35)
$$
\sum_{|S|=k} |\hat{f}(S)|^2 \sim k^{-3/2}
$$

and

(36)
$$
\sum_{|S|>k} |\hat{f}(S)|^2 \sim k^{-1/2}.
$$

References

- $[Fr]$ E. Friedgut, Sharp *threshold of graph properties,* and the *k-sat problem,* Journal of the American Mathematical Society 12 (1999), 1017-1054.
- **[KKL]** J. Kahn, G. Kalai and N. Linial, *The influence of variables on Boolean functions,* Proc. $29th$ IEEE FOCS 58-80, IEEE, New York, 1988.
- **[K]** M. G. Karpovsky, *Finite Orthogonal Series in the Design of Digital Devices*, Wiley, New York, 1976.