ON THE DISTRIBUTION OF THE FOURIER SPECTRUM OF BOOLEAN FUNCTIONS

ΒY

J. BOURGAIN

School of Mathematics, Institute for Advanced Study Princeton, NJ 08540, USA e-mail: bourgain@math.ias.edu

ABSTRACT

In this paper we obtain a general lower bound for the tail distribution of the Fourier spectrum of Boolean functions f on $\{1, -1\}^N$. Roughly speaking, fixing $k \in \mathbb{Z}_+$ and assuming that f is not essentially determined by a bounded number (depending on k) of variables, we have that $\sum_{|S|>k} |\hat{f}(S)|^2 \gtrsim k^{-1/2-\varepsilon}$. The example of the majority function shows that this result is basically optimal.

Introduction

Over recent years, a new area in Harmonic Analysis has emerged, which is the Fourier Analysis of Boolean functions $f: \{1, -1\}^I \to \{0, 1\}$.

Motivated by problems from complexity theory and computer science, a number of remarkable results were obtained from the study of the Fourier transform \hat{f} of f. In this context we mention, for instance, the works of Kahn, Kalai and Linial [KKL] on the influence of variables and E. Friedgut [Fr] on the characterization of the sharp threshold of monotone properties. They rely crucially on the analysis of the Fourier transform.

There is a general philosophy which claims that if f defines a property of 'high complexity', then supp \hat{f} , the support of the Fourier transform, has to be 'spread out'. The result in this paper is one more illustration of this phenomenon: If f

Received January 31, 2001

J. BOURGAIN

is not essentially determined by a few variables, then the tail distribution of \hat{f} satisfies a lower bound

$$\sum_{|S|>k} |\hat{f}(S)|^2 \gg c_{\varepsilon} k^{-\frac{1}{2}-\varepsilon}$$

for all (fixed) k. A precise formulation appears below. This estimate, which turns out to be basically sharp, thus expresses to what extent \hat{f} may be fully concentrated on coefficients $\hat{f}(S)$ of low weight |S|. For a real function f on $\{-1,1\}^N$ let $f = \sum \hat{f}(S)w_S$ be its Fourier expansions. Here,

$$w_S(x_1, x_2, \dots, x_N) = (-1)^{\sum_{I \in S} x_i}$$

L^2 -weight of the tail of the Fourier spectrum

The main result of this Note is the following

PROPOSITION*: Let $f = \chi_A, A \subset \{1, -1\}^N$. Let k > 0 be an integer and $\gamma > 0$ a fixed constant. Assume

(1)
$$\sum \{ |\hat{f}(S)|^2 \left| |\hat{f}(S)| < \gamma 4^{-k^2} \} > \gamma^2.$$

Then

(2)
$$\sum_{|S|>k} |\hat{f}(S)|^2 \gtrsim k^{-\frac{1}{2}-}.**$$

Proof: We may clearly assume that

(3)
$$\sum_{|S|>k} |\hat{f}(S)|^2 < \frac{1}{100}\gamma^2.$$

Fix $0<\kappa<1$ and define

$$I_0 = \left\{ i \in [1, N] \middle| \sum_{i \in S, |S| \le k} |\hat{f}(S)|^2 > \kappa \right\}.$$

Then

$$\kappa |I_0| \le \sum_{i=1}^N \sum_{i \in S, |S| \le k} |\hat{f}(S)|^2 < k \text{ and } |I_0| < \kappa^{-1}k.$$

^{*} This question was raised by J. Håstad, who obtained a lower estimate of the form C^{-k} in (2). The author is also grateful to G. Kalai for several discussions on this and related topics.

^{**} More precisely, there is the lower bound $c_{\varepsilon}k^{-1/2-\varepsilon}$ for all $\varepsilon > 0$. This abbreviated notation will be used repeatedly in the sequel.

Thus

(4)
$$\sum \left\{ |\hat{f}(S)|^2 \Big| S \subset I_0, |S| \le k, |\hat{f}(S)| < \gamma 4^{-k^2} \right\} < (\kappa^{-1}k)^k \gamma^2 16^{-k^2} < \frac{\gamma^2}{100}$$

if we assume

(5)
$$(\kappa^{-1}k)^k 16^{-k^2} < 1/100.$$

Denote

$$I_0' = [1, N] \backslash I_0$$

It follows from (1), (3) and (4) that

(6)
$$\sum_{\substack{S \cap I'_0 \neq \phi \\ |S| \le k}} |\hat{f}(S)|^2 > \gamma^2 - \frac{1}{100}\gamma^2 - \frac{1}{100}\gamma^2 > \frac{1}{2}\gamma^2.$$

Define for $t \ge 0$

(7)
$$\rho_t = \sum_{2^t \le |S \cap I_0'| < 2^{t+1}} |\hat{f}(S)|^2$$

so that (6) implies that

(8)
$$\sum_{0 \le t \le \log k} \rho_t > \gamma^2/2$$

(where $\log k = 2 \log k$).

Next, fix a subset

 $I_1 \subset I'_0$.

Write the variable $x \in \{1, -1\}^N$ as $x = (x_1, x_2)$ with $x_1 \in \{1, -1\}^{I_1}$. For a fixed x_2 write $f_{x_2}(x_1)$ for $f(x_2, x_1)$ and write also $F_T(x_2)$ for $\hat{f}_{x_2}(T)$. Thus,

$$f(x_1, x_2) = \sum_{T \subset I_1} F_T(x_2) w_T(x_1).$$

Fix $0 < \delta < 1$ and $\{\xi_i\}_{i \in I_1}$ independent $\{0, 1\}$ -valued selectors of mean $1 - \delta$. Define

 $I(\omega) = \{i \in I_1 | \xi_i(\omega) = 1\}.$

Fix x_2 . Since f_{x_2} is $\{0, 1\}$ -valued,

(9)
$$2\int |f_{x_2} - \mathbb{E}_{I(\omega)}[f_{x_2}]|^2 dx_1 = \int |f_{x_2} - \mathbb{E}_{I(\omega)}[f_{x_2}]| dx_1$$

where

(10)
$$f_{x_2} - \mathbb{E}_{I(\omega)}[f_{x_2}] = \sum_{\substack{T \subset I_1 \\ T \not \in I(\omega)}} F_T(x_2) w_T(\cdot).$$

Fix 1 . Then by (9) and (10)

$$(p-1)^{1/2} \left(\sum_{i \in I_1 \setminus I(\omega)} |F_{\{i\}}(x_2)|^2\right)^{1/2}$$

$$\leq \|f_{x_2} - \mathbb{E}_{I(\omega)}[f_{x_2}]\|_p$$

$$\leq \|f_{x_2} - \mathbb{E}_{I(\omega)}[f_{x_2}]\|_1^{1-2/p'} \|f_{x_2} - \mathbb{E}_{I(\omega)}[f_{x_2}]\|_2^{2/p'}$$

$$\leq \|f_{x_2} - \mathbb{E}_{I(\omega)}[f_{x_2}]\|_2^{2/p}$$

$$= \left[\sum_{T \subseteq I_1 \atop T \not\in I(\omega)} |F_T(x_2)|^2\right]^{1/p}$$

 and

(11)
$$\left[\sum_{i\in I_1} [1-\xi_i(\omega)] |F_{\{i\}}(x_2)|^2\right]^{p/2} \lesssim (p-1)^{-p/2} \sum_{T\subset I_1} [1-\prod_{i\in T} \xi_i(\omega)] |F_T(x_2)|^2.$$

Recall that $\int \xi_i d\omega = 1 - \delta$. The left side of (11) is at least

(12)
$$\delta^{p/2} \left[\sum_{i \in I_1} |F_{\{i\}}(x_2)|^2 \right]^{p/2} - \left| \sum_{i \in I_1} \left(\xi_i(\omega) - (1-\delta) \right) |F_{\{i\}}(x_2)|^2 \right|^{p/2} \\ \ge \delta^{p/2} \left[\sum_{i \in I_1} |F_{\{i\}}(x_2)|^2 \right] - \left| \sum_{i \in I_1} \left(\xi_i(\omega) - (1-\delta) \right) |F_{\{i\}}(x_2)|^2 \right|^{p/2}.$$

Thus

(13)
$$\delta^{p/2} \sum_{i \in I_1} |F_{\{i\}}(x_2)|^2 \lesssim (p-1)^{-p/2} \left[\sum_{T \subset I_1} [1 - \prod_{i \in T} \xi_i(\omega)] |F_T(x_2)|^2 \right] \\ + \left| \sum_{i \in I_1} \left(\xi_i(\omega) - (1-\delta) \right) |F_{\{i\}}(x_2)|^2 \right|^{p/2}.$$

272

Integrate (13) in x_2 and ω . Clearly

(14)
$$\int \int \left| \sum_{i \in I_1} \left(\xi_i(\omega) - (1 - \delta) \right) |F_{\{i\}}(x_2)|^2 \right|^{p/2} d\omega dx_2$$
$$\leq \left[\int \int \left| \sum_{i \in I_1} \left(\xi_i(\omega) - (1 - \delta) \right) |F_{\{i\}}(x_2)|^2 \right| d\omega dx_2 \right]^{p/2}$$
$$\lesssim \left[\int \int \left[\sum_{i \in I_1} \left(1 - \xi_i(\omega) \right) |F_{\{i\}}(x_2)|^4 \right]^{1/2} d\omega dx_2 \right]^{p/2}.$$

Estimate

$$|F_{\{i\}}(x_2)| = \left| \sum_{S \cap I_1 = \{i\}} \hat{f}(S) w_S(x) \right|$$

$$\leq \left| \sum_{|S| \le k, S \cap I_1 = \{i\}} \hat{f}(S) w_S \right| + \left| \sum_{|S| > k, S \cap I_1 = \{i\}} \hat{f}(S) w_S \right|,$$

$$\left(\sum_{i \in I_1} |F_{\{i\}}(x_2)|^4 (1 - \xi_i(\omega)) \right)^{1/2} \lesssim \left(\sum_{i \in I_1} \left| \sum_{|S| \le k, S \cap I_1 = \{i\}} \hat{f}(S) w_S \right|^4 \right)^{1/2}$$

$$+ \sum_{i \in I_1} \left| \sum_{|S| > k, S \cap I_1 = \{i\}} \hat{f}(S) w_S \right|^2 (1 - \xi_i(\omega)),$$

and integrating, by Beckner's inequality

(15)
$$\int \int \left[\sum_{i \in I_1} |F_{\{i\}}(x_2)|^4 (1 - \xi_i(\omega)) \right]^{1/2} d\omega dx_2$$
$$\leq 3^k \left[\sum_{i \in I_1} \left(\sum_{\substack{|S| \le k, S \cap I_1 = \{i\} \\ i \in S}} |\hat{f}(S)|^2 \right)^2 \right]^{1/2} + \delta \sum_{\substack{|S| > k}} |\hat{f}(S)|^2$$
$$\leq 3^k \max_{i \in I_1} \left(\sum_{\substack{|S| \le k \\ i \in S}} |\hat{f}(S)|^2 \right)^{1/2} + \delta \sum_{\substack{|S| > k}} |\hat{f}(S)|^2$$
$$< 3^k \kappa^{1/2} + \delta \sum_{\substack{|S| > k}} |\hat{f}(S)|^2$$

(we use here the fact that $I_1 \cap I_0 = \emptyset$ and the definition of I_0).

Substitute (15) in (14). Returning to (13), we thus obtain

(16)
$$\delta^{p/2} \sum_{|S \cap I_1|=1} |\hat{f}(S)|^2 \lesssim (p-1)^{-p/2} \sum_{S} [1 - (1-\delta)^{|S \cap I_1|}] |\hat{f}(S)|^2 + \delta^{p/2} \left(\sum_{|S|>k} |\hat{f}(S)|^2\right)^{p/2} + (3^k \kappa^{1/2})^{p/2}.$$

Estimate

$$1 - (1 - \delta)^{|S \cap I_1|} \le \delta |S \cap I_1|$$
 if $|S \cap I'_0| \le k$,
< 1 otherwise.

Thus

(17)
$$\delta^{p/2} \sum_{|S \cap I_1|=1} |\hat{f}(S)|^2 \lesssim (p-1)^{-p/2} \delta \sum_{|S \cap I_0'| \le k} |S \cap I_1| |\hat{f}(S)|^2 + (p-1)^{-p/2} \sum_{|S|>k} |\hat{f}(S)|^2 + \delta^{p/2} \left(\sum_{|S|>k} |\hat{f}(S)|^2\right)^{p/2} + (3^k \kappa^{1/2})^{p/2}.$$

We will now specify the set
$$I_1 \subset I'_0$$
.

Fix $0 \leq t_0 \leq \log k$ and let $I_1 = I_{\omega'}$ be a random subset of I'_0 of density $10^{-3}2^{-t_0}$. This ensures that if $2^{t_0} \leq |S \cap I'_0| < 2^{t_0+1}$, then

(18)
$$\mathbb{E}_{\omega'}[|S \cap I_1| = 1] > 10^{-4}.$$

Also

(19)
$$\mathbb{E}_{\omega'}[|S \cap I_1|] = 10^{-3}2^{-t_0}|S \cap I_0'|.$$

Applying $\mathbb{E}_{\omega'}$ to (17) and recalling the definition (7) of ρ_t , we get

(20)
$$\delta^{p/2}\rho_{t_0} \lesssim (p-1)^{-p/2} \delta\left(\sum_{t \le \log k} 2^{t-t_0} \rho_t\right) + (p-1)^{-p/2} \sum_{|S| > k} |\hat{f}(S)|^2 + \delta^{p/2} \left(\sum_{|S| > k} |\hat{f}(S)|^2\right)^{p/2} + (3^k \kappa^{1/2})^{p/2}.$$

In order to have the left term in (20) larger than the first term on the right, take

(21)
$$\delta \sim (p-1)^{p/(2-p)} \left(\frac{2^{t_0} \rho_{t_0}}{\sum_{t \le \log k} 2^t \rho_t}\right)^{2/(2-p)}.$$

Taking

(22)
$$\kappa = 10^{-k}$$

to make the last term in (20) negligible, condition (5) is satisfied and (20) and (21) imply

(22)
$$\sum_{|S|>k} |\hat{f}(S)|^2 \gtrsim \min\left\{ (p-1)^{p/(2-p)} \left(\frac{2^{t_0} \rho_{t_0}}{\sum_{t \le \log k} 2^t \rho_t} \right)^{p/(2-p)} \rho_{t_0}, \rho_{t_0}^{2/p} \right\}.$$

Here $0 \le t_0 \le \log k$ and 1 are arbitrary.

We distinguish two cases.

CASE 1:

(23)
$$\sum_{t \le \log k} 2^t \rho_t < \sqrt{k}.$$

Recalling (8), we may take $0 \le t_0 \le \log k$ such that

(24)
$$\rho_{t_0} \gtrsim 1/\log k.$$

Take in (22)

(25)
$$p = 1 + 1/\log k.$$

From (23), (24) and (25),

(26)
$$(22) \gtrsim \min\left((\log k)^{-2} k^{-1/2}, (\log k)^{-2}\right) \gtrsim (\log k)^{-2} k^{-1/2}.$$

Case 2:

$$\sum_{t \le \log k} 2^t \rho_t \ge \sqrt{k}.$$

Choose t_0 s.t.

(27)
$$2^{t_0} \rho_{t_0} > \frac{1}{\log k} \sum_{t \le \log k} 2^t \rho_t > \frac{\sqrt{k}}{\log k},$$

hence

(28)
$$\rho_{t_0} > (\log k)^{-1} k^{-1/2}.$$

Take now $p \xrightarrow{\leq} 2$ in (22). We get

(29)
$$(22) \gtrsim \min\left((\log k)^{-2/(2-p)-1}k^{-1/2}, (\log k)^{-2}k^{-1/p}\right) > k^{-1/2-}.$$

Thus (2) follows from (26) and (29).

COROLLARY: Let $f = \mathcal{X}_A, A \subset \{1, 1\}^N$ satisfying

(30)
$$|A|(1-|A|) > 1/10.$$

Let k > 0 be an integer and assume

(31)
$$\max_{|S| \le k} |\hat{f}(S)| < 4^{-k^2 - 1}.$$

Then

(32)
$$\sum_{|S|>k} |\hat{f}(S)|^2 \gtrsim k^{-1/2-}.$$

Remark: The lower bound (32) in the corollary is basically sharp. This is demonstrated by the example of the 'majority function' which we define as the $\{1, -1\}$ -valued function

(33)
$$f(\varepsilon) = \operatorname{sign}(\varepsilon_1 + \varepsilon_2 + \dots + \varepsilon_N)$$

on $\{1, -1\}^N$. It is known (see [K]) that in this case

(34)
$$|\hat{f}(S)|^2 \sim {\binom{N}{k}}^{-1} k^{-3/2} \text{ for } |S| = k > 0.$$

Hence

(35)
$$\sum_{|S|=k} |\hat{f}(S)|^2 \sim k^{-3/2}$$

 and

(36)
$$\sum_{|S|>k} |\hat{f}(S)|^2 \sim k^{-1/2}.$$

References

- [Fr] E. Friedgut, Sharp threshold of graph properties, and the k-sat problem, Journal of the American Mathematical Society 12 (1999), 1017–1054.
- [KKL] J. Kahn, G. Kalai and N. Linial, The influence of variables on Boolean functions, Proc. 29th IEEE FOCS 58-80, IEEE, New York, 1988.
- [K] M. G. Karpovsky, Finite Orthogonal Series in the Design of Digital Devices, Wiley, New York, 1976.